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Abstract
The dynamics of a baby-skyrmion configuration, in a model Landau–Lifshitz
equation, was studied in the presence of various potential obstructions. The
baby-skyrmion configuration was constructed from two Q = 1 hedgehog
solutions to the baby-skyrme model in (2+1) dimensions. The potential
obstructions were created by introducing a new term into the Lagrangian which
resulted in a localized inhomogeneity in the potential terms’ coefficient. In
the barrier system, the normal circular path was deformed as the skyrmions
traversed the barrier. During the same period, it was seen that the skyrmions
sped up as they went over the barrier. For critical values of the barrier height
and width, the skyrmions were no longer bound and were free to separate. In
the case of a potential hole, the baby skyrmions no longer formed a bound
state and moved asymptotically along the axis of the hole. It is shown how to
modify the definition of the angular momentum to include the effects of the
obstructions, so that it is conserved.

PACS numbers: 12.39.Dc, 11.10.Lm, 75.10.Hk

1. Introduction

The scattering of particles off potential holes and barriers in classical and quantum mechanical
systems is seemingly different. In a classical system, if the particle has sufficient energy it can
traverse a barrier; if it does not, it gets reflected. When it encounters a hole it speeds up as it
passes over the hole and is always transmitted. In both cases the particle is either transmitted
or reflected. In quantum mechanical scattering the particle can be reflected and transmitted for
either a barrier or a hole but these events occur with a certain probability which is dependent
on the particle’s energy and on the size of the barrier or the hole.
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In this paper, we examine the scattering properties of a topological soliton in magnetic
systems, whose motion is then governed by the Landau–Lifshitz equation. Topological solitons
are, of course, classical objects (as they satisfy classical equations of motions). However, they
describe extended objects and, as shown in [1], some of their properties resemble those of
quantum systems. Hence, in this paper we study this problem further, this time concentrating
on systems whose dynamics is described by a Landau–Lifshitz equation. This equation arises
in the dynamics of magnetic bubbles and so, in this paper, we look at the behaviour of
topological solitons in the presence of potential obstructions. The topological solitons under
investigation are baby skyrmions which are thought to describe the experimentally observable
magnetic bubbles.

Our investigation should also shed some light on the properties of magnetic bubbles. Such
bubbles are not mathematical artefacts but have been produced experimentally by subjecting a
ferromagnetic material to a pulsed magnetic field. The ferromagnetic domains of the material
are then squeezed by the field. If a field of large enough magnitude is applied over a sufficient
length of time, the magnetic domains of the system collapse leaving behind the material which
is uniformly magnetized in the direction of the applied field. This process is not instantaneous
or uniform. As the domains tend to align with the applied field, the pulsing of certain materials
results in the pinching of the domain walls into a cylindrical domain called a magnetic bubble.
Magnetic bubbles were once considered as an alternative form of memory storage due to the
density at which they could be stored.

In real three-dimensional systems the magnetic bubbles are stabilized by the finite
thickness of the thin films in which they are created. The model examined here is strictly in 2D.
In this case the bubbles are stabilized by the introduction of the slightly artificial skyrme term.
For more realistic calculations one would need to perform 3D simulations. Magnetic bubbles
and their properties have been extensively experimentally researched; further information on
this research can be found in [3, 4].

The baby-skyrme model in (2+1) dimensions is defined by

L = 1
2γ1∂μφ · ∂μφ − 1

4γ2[(∂μφ · ∂μφ)2 − (∂μφ · ∂νφ)(∂μφ · ∂νφ)] − V (φ), (1)

where φ is a three-component scalar field and the indices run over the spacetime coordinates.
This is referred to as the baby-skyrme model to distinguish it from the full skyrme nuclear
model of baryons. The first term is the exchange energy, the second and third terms are the
skyrme term and the potential term, respectively. The latter two terms have been introduced to
avoid the consequences of Derrick’s theorem [5] and to stabilize topological soliton solutions
in two dimensions. The condition that φ2 = 1 is imposed so that the target space is the

2-sphere, such that φ is now a map φ : R
2 → S2. For finite energy solutions it is necessary for

the fields to tend to a vacuum at infinity, where φ3 = 1 at ∞. This results in a compactification
of R

2 so that φ now takes values in the extended plane R
2 ∪ ∞, which is topologically

equivalent to S2. The constraint equation φ2 = 1 and the boundary condition at infinity results
in the field φ becoming a non-trivial map φ : S2 → S2. Each soliton solution is grouped into
a different homotopy class according to the winding number, or topological charge, of this
map. The topological charge Q is given by

Q = 1

8π

∫ ∞

−∞
εijφ · (∂jφ × ∂iφ) d2x, (2)

where the indices i, j run over the space coordinates and Q ∈ Z. The topological soliton
solutions of the baby-skyrme model are called baby skyrmions. Here, for simplicity, we
shall refer to baby skyrmions of charge Q as Q-skyrmions. Recent work has shown that the
continuum dynamical equation in anti-ferromagnetic systems also resembles a second-order
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relativistic wave equation [2] in which such soliton solutions exist. The work in [2] established
many interesting properties of solitons in such systems.

Our discussion so far has concerned the relativistic systems of skyrmions. However, as we
said above, they also arise in the description of magnetic bubbles, but this time their evolution
is described by the first-order Landau–Lifshitz equation. The Landau–Lifshitz equation is
given by

∂φ

∂t
= φ × −δW

δφ
, (3)

where W is the energy functional written as

W =
∫ ∫ ∞

−∞
w dx dy, (4)

and w is the static part of (1) given by

w = 1
2γ1∂iφ · ∂iφ + 1

4γ2[(∂iφ · ∂iφ)2 − (∂iφ · ∂jφ)(∂iφ · ∂jφ)] + V (φ).

Thus we can write δW
δφ

:

δW

δφ
= γ1∇2φ − ∂V (φ)

∂φ

+
1

2
γ2{2∂i[(∂jφ · ∂jφ)∂iφ] − ∂i[(∂iφ · ∂jφ)∂jφ] − ∂j [(∂iφ · ∂jφ)∂iφ]}.

Analysis of the dynamics in Landau–Lifshitz systems has been greatly simplified by the
work of Papanicolaou and Tomaras [10], who constructed unambiguous conservation laws
for the system governed by (3). In their work they found that the important quantity was the
topological charge density q:

q = εijφ · (∂jφ × ∂iφ). (5)

Some of the conservation laws can be constructed as a moment of q. They involve

l = 1

2

∫ ∫ ∞

−∞
x2q dx dy, (6)

m =
∫ ∫ ∞

−∞
(φ3 − 1) dx dy, (7)

J = l + m, (8)

where l is the orbital angular momentum, m is the total magnetization in the third direction
and J is the total angular momentum. Conservation laws for the system were constructed by
examining the time evolution of q:

q̇ = −εij ∂i∂lσjl, (9)

where ∂lσjl can be written in terms of the energy functional W :

∂lσjl =
(

δW

δφ
· ∂jφ

)
. (10)

Taking an explicit time derivative of (1) gives

l̇ = 1

2

∫ ∫ ∞

−∞
x2q̇ dx dy, (11)
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and we note that this can be recast as

l̇ =
∫ ∫ ∞

−∞
εij σij dx dy (12)

by integrating (11) by parts. In the case of a system with a symmetric tensor σij , l̇ = 0 and
angular momentum is conserved.

The guiding centre coordinate R of the soliton is defined as the first moment of the
topological charge density q:

R = 1

4πQ

∫ ∫ ∞

−∞
xq dx dy. (13)

Since our solitons are in two spatial dimensions, their position can generally be defined as the
location of the centre of each soliton. This definition can be interpreted in two ways. One can
consider the soliton centre to be the point at which the third component of the field φ3 = −1
or to be the maxima of the topological charge density q. It was seen in previous simulations
[8] that both of these definitions produce near identical trajectories. One can also consider the
mean squared radius r of the solitons, defined by

r2 = 1

4πQ

∫ ∫ ∞

−∞
(x − R)2q dx dy. (14)

One can expand out (14) to find a relationship between the mean squared radius of the solitons
and l:

r2 = l

2πQ
− R2. (15)

This relationship among l, r and R greatly helps to understands the dynamics described
in later sections.

Much of the previous work on baby-skyrme models, in the context of Landau–Lifshitz
dynamics, has concerned the choice of two different potential terms V (φ):

V (φ) = 1
2γ3(1 − φ3)

4, (16)

V (φ) = 1
2γ3(1 − φ3

2). (17)

Models which employ either of these potentials are commonly referred to as the
holomorphic baby-skyrme model (16) and the ‘new’ baby-skyrme model (17) to distinguish
it from the holomorphic one. The holomorphic model was first studied in the context of
Landau–Lifshitz dynamics in [8], since it provided an analytical solution to the system of
equations. The topological solitons of this model are polynomially localized. In [8] it was
shown that two 1-skyrmions orbited around each other along deformed circular trajectories.
Their work involved a local magneto-static field in addition to the three previous terms in
(1), which resulted in the non-conservation of l and m. The total angular momentum J was
well conserved in time. The authors of [8] attributed the non-conservation of l and m to the
non-symmetric structure of σjl due to the presence of the magneto-static field.

The new baby-skyrme model is a more realistic case of easy axis anisotropy and we use
this in our study, i.e. we consider V (φ) to take the form of (17). Some of the work done on
it has been in relation to the dynamics of magnetic bubbles [7]; this study also involved a
local magneto-static field. Analytic solutions do not exist and so all solutions must be found
numerically. The topological solitons of this model are exponentially localized. In [7] it was
found that two Q = 1-skyrmions orbited each other on a circular trajectory modified by a
Larmor procession due to the magnetic field. J was well conserved in time but its constituent
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components l and m were not. The arguments for the non-conservation were identical to those
in the holomorphic model. Since those early papers, there has been extensive work done on
both these models and their multi-skyrmion structures. The details can be found in the work
of Weidig [6] or for a larger class of potentials V (φ) in [9].

2. Constructing the initial field configuration

Seeking a static field configuration which is a solution of (3) for a potential term V (φ) of
the form (17), we assume that the solitons take the form of a hedgehog configuration for a
Q-skyrmion:

φ = (cos(Qθ) sin(f (r)), sin(Qθ) sin(f (r)), cos(f (r))), (18)

where f (r) is the profile function satisfying certain boundary conditions, θ is the polar angle
and Q is the topological charge of the skyrmions. The skyrmion solutions are minima of the
energy functional (4). We are interested in the dynamics of Q = 1 skyrmions. Inserting
the hedgehog configuration for Q = 1 into the energy functional and minimizing the integral
result in a second-order differential equation for the profile function f (r):

f ′′
(

γ1r +
γ2 sin2 f

r

)
+ f ′

(
γ1 − γ2 sin2 f

r2

)

+ f ′2
(

γ2 sin f cos f

r

)
− γ1 sin f cos f

r
− γ3r cos f sin f = 0. (19)

This can be rearranged into the form f ′′ = h(r, f, f ′). The profile function must satisfy
certain boundary conditions for there to exist finite energy solutions. The boundary conditions
impose constraints on f (r) at the origin and infinity: f (0) = π and f (∞) = 0. The second-
order differential equation for f (r) can be solved numerically using the shooting method.
With the profile function obtained we can construct from (18) a 1-skyrmion solution to (3). A
two 1-skyrmion configuration can be constructed by the superposition procedure. The easiest
method to do this is to transform the fields to a stereographic variable �:

� = φ1 + iφ2

1 + φ3
,

φ1 = � + �∗

1 + |�|2 ,

φ2 = 1

i

� − �∗

1 + |�|2 , (20)

φ3 = 1 − |�|2
1 + |�|2 .

The stereographic variable � can then be rewritten in terms of the hedgehog ansatz variables,
f (r) and θ, as

� = tan

(
f (r)

2

)
eiθ .

To construct a two Q = 1-skyrmion configuration in which the two skyrmions are in an
attractive channel, we take

� = �1 − �2,

�1 = tan

(
f (r1)

2

)
eiθ1 , (21)

�2 = tan

(
f (r2)

2

)
eiθ2 ,
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where ri =
√

((x − xi)2 + (y − yi)2) and θi = tan−1
(

y−yi

x−xi

)
are calculated relative to the

centres of the skyrmions (xi, yi). During the simulations it was found that the configuration
constructed in this manner did not replicate the skyrmion ring configurations for small values
of d =

√
((x1 − x2)2 + (y1 − y2)2); see [6]. The superposition procedure was a very good

approximation to a two 1-skyrmion configuration for values of d > 6, where the skyrmions
were well separated to be distinct. To obtain a true representation of the configuration for all
values of d, we used a gradient flow method to ‘relax’ the field configuration. The above field
configuration (21) constructed for skyrmion separation d = 8 was used as an initial condition
of the gradient flow equation given by

∂φ

∂t
= −κ

δW

δφ
+ kφ,

where k is a Lagrange multiplier introduced such that the constraint φ2 = 1 is satisfied. The
field configurations obtained by this relaxation method show the required ring-like properties
for small values of the skyrmion separation.

3. Potential obstruction

In this paper, we study the scattering properties of a two Q = 1-skyrmion configuration on
a potential obstruction which is localized in a finite region of space. In constructing the
obstruction we adopt a similar approach used in the previous work of one of the authors [1]
and introduce a term into the Lagrangian (1) which vanishes in the vacuum state φ3 = +1. The
obstructions need to be introduced in this way so that the tails of the solitons are not changed
by the obstruction. Therefore, we add the additional potential term Vobstruction(φ3) which is
identical to the potential in (1) and is localized to a finite region of space:

Lnew = Lold + Vobstruction(φ3),

where

Vobstruction(φ) = 1
2


(
1 − φ2

3

)
. (22)


 can be either positive or negative. The Lagrangian of (1), by the introduction of this
additional potential, is changed such that the potential coefficient now depends on the space
coordinates. The introduction of this term implies that the static part of (1) can be rewritten as

L = 1
2γ1∂iφ · ∂iφ − 1

4γ2[(∂iφ · ∂iφ)2 − (∂iφ · ∂jφ)(∂iφ · ∂jφ)] − 1
2γ3(x, y)

(
1 − φ2

3

)
, (23)

where the potential term coefficient γ3 is now a function of the coordinates (x, y) and the
static part of (1) is only considered as imposed by the Landau–Lifshitz equation (3). This
inhomogeneity will be localized to a finite region of space. The sign of 
 determines whether
the potential obstruction is a hole or a barrier. When 
 > 0, the obstruction is a barrier.
Conversely, when 
 < 0 the obstruction is a hole.

4. Numerical procedures and the free system dynamics

Unfortunately, it is impossible to solve (3) analytically, we have therefore had to study this
problem numerically. The fields and their derivatives were discretized in the usual manner and
were placed on a lattice of 251 × 251 points, with lattice spacing dx = 0.1. The numerical
integration of the three-coupled differential equations of (3) involved the use of a fourth-order
Runge–Kutta method of simulating time evolution with a time step of dt = 0.001. The
various integrals calculated throughout the simulations were performed using a 2D Simpson’s

6
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Figure 1. Trajectory of the upper skyrmion in the absence of any obstruction for a two 1-skyrmion
configuration.

rule. The constraint equation requires that the fields lie on the 2-sphere, φ2 = 1, and this was

imposed at every time step by rescaling each field component so that φi → φi√
φ·φ .

The skyrmions were initially placed at (0,±d/2) in the upper and lower planes, where d
is the distance between the two skyrmion centres (xi, yi). The trajectory of each skyrmion was
tracked by following the maxima of the topological charge density and interpolating between
the lattice points. All of the simulations have been performed for a skyrmion separation of
d = 6. This was found to be the optimum distance, where the skyrmions are separated enough
from each other to be distinct but close enough to interact. The coefficients γi have been set
to unity in all the simulations unless stated otherwise.

4.1. No obstruction dynamics

Initially we examined the behaviour of the skyrmions without an obstruction, i.e. with 
 = 0.
Figure 1 shows the trajectory of the upper skyrmion of a two 1-skyrmion configuration for

 = 0. The skyrmions orbit around the configuration’s centre (0, 0). The trajectories of each
skyrmion lie along a circle of radius r 
 3. Their position undergoes mild oscillations during
the simulation. The total energy Etot and angular momentum J = l + m are conserved with
time. Additionally, each individual angular momentum component l and m is also conserved.
The timescale for one period is 700 s. This motion of two baby skyrmions in a Landau–Lifshitz
system is well understood and an analogy with the Hall motion of two interacting electrons is
usually invoked when discussing their trajectory [10].

5. Simple obstruction

There are many choices one can make for the geometry of the potential obstruction. The
simplest choice initially studied was a symmetric obstruction. The obstruction was placed

7
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Figure 2. Trajectories for both the upper and lower skyrmions with a potential hole, for b = 1
and with the time length shown in brackets: (a) 
 = −0.1 (690 s), (b) 
 = −0.25 (290 s) and
(c) 
 = −0.5 (215 s).

symmetrically along the x-axis with width b, i.e. starting at y = −b/2 and continuing up to
y = b/2 and extending for all values of x. In our study, we look at the differences of dynamics
due to holes and barriers. They will be discussed in the following sections.

5.1. Potential hole

We start by recalling that in the absence of all obstructions the skyrmion executes a circular
path around their centre. Figure 2 shows the trajectories of the upper and lower skyrmions
encountering a potential hole for different values of 
, for b = 1. In all plots the skyrmions
initially try to execute the trajectory of figure 1 but are deflected. They move asymptotically
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Figure 3. Plot of the trajectories of the upper skyrmion in a system with a potential hole of width
b = 3 for various values of 
.

along the axis of the hole at an approximately constant value, ymax. It is clear from figure 2
that the larger the |
|, the larger the value of ymax. The skyrmions of figure 2(a) are able to
get ‘closer’ to the hole than the skyrmions of figure 2(b) or figure 2(c). Figure 3 shows the
trajectories of only the upper skyrmions interacting with the potential hole for various values
of 
 when b = 3. Comparing this plot with those in figure 2, one sees the effect of a larger b.
The larger the b the larger the ymax for a given 
. The skyrmions’ tail can feel the hole earlier
in a system of larger b than in a system of smaller b. The same dependence of ymax on 
 is
evident in figure 3. In figure 3 the skyrmion trajectories of 
 = −0.25,−0.5 are seen to be
reflected by the boundary. The skyrmions in the lower plane execute similar trajectories.

To explain the observed behaviour of skyrmions when encountering a hole, which may at
first sight appear as non-classical, we need to examine the binding energies of the configuration.
If the energy of the two 1-skyrmion configuration in the presence of a hole is denoted by E2,
and E1 is the energy of a single 1-skyrmion placed at the same position as one of the skyrmions
in E2, then the binding, or the interaction energy, is given by

EB = E2 − 2E1. (24)

In the system with b = 1, 
 = −0.25 we have E2 = 2.1206/8π and E1 = 1.0685/8π .
The binding energy of the two skyrmions in this system is thus EB = −0.0174/8π , which is
negative. Thus initially the skyrmions behave as if they are still in a bound state, and try to
execute the usual circular motion about their centre. If we examine the plot of the trajectory
in figure 2, we see that as the skyrmions approach the hole, they reach a point where they
separate and behave as two unbound skyrmions. Considering the definition of E1, we can
compute the energy of the single skyrmion as a function of the distance from the hole. Initially
the skyrmion is at a distance D = 3 from the centre of the b = 1 hole and the binding energy
is EB = −0.0174/8π . If D = 2 the binding energy is reduced to EB = −0.005/8π and
if the skyrmion is brought closer at D = 1 then EB = +0.0152/8π . So, as the skyrmions
approach the hole the binding energy of the configuration is modified such that they no longer

9
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Figure 4. Trajectories of upper and lower skyrmions for the b = 2 barrier system for various values
of 
: (a) 
 = 0.1, (b) 
 = 0.25 and (c) 
 = 0.3.

form a bound state and are able to separate. It is clear from the plots of the trajectory that
the skyrmions, for a smaller value of 
, are able to get closer to the hole than those for larger
values of 
. The skyrmions are able to get closer in these systems, because the binding
energies of the skyrmions do not reach its critical value until the skyrmions get closer to the
hole. In the system of a larger value of 
 the hole modifies the binding energy earlier, and
thus the system reaches its critical value before the skyrmions can get as close as those for the
smaller 
.

5.2. Potential barrier

Next, we have studied several cases of the scattering of the same two 1-skyrmion configuration
off potential barriers. Figure 4 shows the trajectories of the upper and lower skyrmions of a two

10
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1-skyrmion configuration scattering off a potential barrier of width b = 2, for various values
of 
. It can be seen in each plot that the skyrmions are deflected as they traverse the barrier.
This deflection always occurs in the direction of the centre of the configuration and hence the
normal circular path is deformed as the skyrmions overcome the barrier. Trajectories for a
smaller barrier width show a sharper deflection than those with larger b. Since the skyrmions
are extended objects, when they traverse the barrier they feel the barrier the most at the middle
point. It is then only natural that the maximum point of deviation from the normal circular
path will be at this point. Comparing trajectories of the same 
 but with different values of b,
we note that the skyrmions in the system with the larger value of b have more time to adjust to
the barrier once they are ‘on’ top of it and therefore their path is not as sharp as for a smaller
b. The larger value of b ‘smooths’ out the sharpening effects seen in the system with a smaller
value of bs. More interestingly, during this deviation the skyrmions speed up as they traverse
the barrier. In figures 4(a) and (b) the times taken for the skyrmion centre to reach the edge of
the barrier are 110 s and 140 s respectively, but the times taken for the centre to traverse the
full width of the barrier are only 25 s and 12.5 s.

The deflection and speeding up of the skyrmions can be explained by remembering how
the skyrmions are constructed. As explained in section 2, our two 1-skyrmion configuration
was constructed in such a way that the skyrmions were in an attractive channel. When they
encounter a barrier the energy of their configuration would have to increase. The skyrmions
counteract this increase due to the barrier by reducing their separation distance d. This is
clear by considering the energies of the configuration away from the barrier with d = 6. The
energy of such a configuration is E = 2.1277. If the same configuration was then placed on
the barrier with 
 = 0.2, the energy becomes E = 2.1283. Thus any increase in the potential
energy due to the barrier must be compensated by a reduction in d. The energy increase of
the system would be at its greatest when the skyrmions are in the middle of the barrier; hence
the biggest deflection is seen at this point. Due to this quick adjustment of d, the skyrmions
speed up as they traverse the barrier.

Another interesting feature of the scattering on a barrier is the ‘transition dynamics’
shown in figure 5. These plots show the transition to a state in which the skyrmions do not
traverse the barrier and, instead, move away from each other. The transition to such a state is
shown through the variation in the potential coefficient 
 for a fixed value of the barrier width
b = 3. Similar plots could also have been obtained by choosing a fixed value of 
 
 0.25 and
increasing the barrier width b from b = 2 to b = 3. This effect is due to the binding energies
of the skyrmion configuration. Using the previous definition of the binding energy (24) and its
constituent parts, one can examine the binding energies in the barrier system. In a system with
b = 2 and 
 = 0.1, E2 = 2.1317/8π and E1 = 1.0723/8π; therefore, EB = −0.0087/8π so
the skyrmions are still bound. In b = 2 and 
 = 0.3, E2 = 2.1397/8π and E1 = 1.0730/8π;
therefore, EB = −0.0063/8π and the skyrmions are still bound although a bit more loosely
than for the smaller value of 
. Next, consider the state where the skyrmions separate from
each other, i.e. for b = 3 and 
 = 0.25. Then E2 = 2.1482/8π and E1 = 1.0767/8π and,
therefore, EB = −0.0052/8π . The trajectory clearly shows that the skyrmions, for these
values of b and 
, behave as if they are unbound. Thus, there appears to exist a threshold value
of EB in the barrier system, according to our definition of EB , which determines whether the
skyrmions are bound or unbound. This threshold value is b dependent, but is approximately
around EB = −0.005/8π . We believe that this threshold is associated with the ‘tails’ of the
skyrmions.

When two skyrmions are well separated, they interact through their tails. In the new
baby-skyrme model, the skyrmions are exponentially localized. Examining the limit of the
differential equation (19) describing the profile function f (r), for large r, the exponential
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Figure 5. Plots showing the transition to asymptotic state b = 3 
 = 0.25, through variations in

 for a fixed b = 3: (a) 
 = 0.10, (b) 
 = 0.15, (c) 
 = 0.20 and (d) 
 = 0.25.

localization is evident. The solution to these differential equations is the modified Bessel
functions

f (r) ∼ 1√
γ3r

exp(−γ3r). (25)

The localization of the profile function for a skyrmion is governed by the potential term
coefficient γ3. The potential obstructions were introduced as inhomogeneities, in the space of
the potential coefficient, γ3 s value. In the barrier system, the potential coefficient γ3 takes the
value of γ3 + 
 on the barrier. There, the asymptotic value of the profile function is modified:

γ3 → γ3 + 
,
(26)
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Figure 6. Plots of the orbital angular momentum l, total magnetization m and total angular
momentum J = l + m for b = 2, 
 = 0.25.

f (r) ∼ 1√
(γ3 + 
)r

exp(−(γ3 + 
)r).

As the skyrmion tail penetrates the region, it becomes attenuated by the potential
obstruction. The width of the barrier causes the tail to be attenuated earlier for a larger
value of b than for a smaller one. If, as we have assumed, the appreciable interaction of two
well-separated skyrmions is due to the tail–tail interaction between them, then if these tails
are attenuated, the interaction must also be reduced. Thus, there must exist a value of 
, the
size of the attenuation of the tail in the obstruction, for which the appreciable interaction of
the skyrmions’ tail is no longer sufficient for the skyrmions to undergo their usual dynamics.
If there exists a critical value for 
, then there must exist a critical value of EB . Thus the
threshold value of the binding energy corresponds to the particular values of b and 
 for which
the tail–tail interaction of the skyrmions is no longer sufficient to cause the usual circular
motion, and the skyrmions can separate off from each other.

6. Angular momentum

In this section we present the explanation of our results based on the study of the total angular
momentum J . The orbital angular momentum l and the total magnetization in the third
direction m were calculated through all the simulations using the definitions given by (1) and
(7). Figure 6 shows a plot of l, m and J for a two 1-skyrmion configuration interacting with
a potential barrier of width b = 2 and 
 = 0.25. It is clear that ṁ = 0 throughout, but that l
and J are not conserved in time.

In systems involving a two 1-skyrmion configuration the guiding centre coordinate R ,
defined in (14), corresponds to the centre of the configuration. A calculation of R during the
barrier simulations has indeed shown that R = 0. This is expected since the trajectories of the
skyrmions in the system are always symmetric with respect to a reflection through the origin
and so the centre of the configuration always lies at this point. Considering (15) with R = 0,
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Figure 7. Plot of the average skyrmion radius as a function of time for a potential barrier with
b = 2 and 
 = 0.25.

we note that the orbital angular momentum l and the average size of the skyrmions r are now
directly related to each other in the barrier system by

r2 = l

2πQ
. (27)

Figure 7 shows a plot of the average skyrmion radius as a function of time for a potential
barrier system of width b = 2 and 
 = 0.25. The points at which r(t) approaches its minimum
corresponds to the skyrmions traversing the barrier. The point at which they have reached the
maximum of the barrier corresponds to the minimum of r(t). Thus as the skyrmions traverse
the barrier, their average size decreases from its starting value by around 20%. Since the tail
of the skyrmion is exponentially localized and this localization is governed by the potential
coefficient parameter γ3, it is expected that due to the inhomogenaity in γ3 their size would
decrease in the region of larger γ3 explaining the observed behaviour in l.

Figure 8 shows a plot of l, m and J for a two 1-skyrmion configuration interacting with a
potential hole of width b = 2 and 
 = 0.25. Again, it is clear that ṁ = 0 throughout, but l and
J are not conserved in time, analogous to what was seen in the system involving a potential
barrier. The guiding centre coordinate R for this system can also be shown to vanish and thus
(14) is valid also in systems with potential holes. Using this, we can therefore plot r(t) for
a potential hole. Figure 9 shows a plot of the average skyrmion radius as a function of time
for a potential hole system of width b = 2 and 
 = −0.25. It is clear from the plot that as
the skyrmions approach the boundary asymptotically along the edge of the hole, the average
size of the skyrmion increases continually, increasing to approximately thrice its initial size.
This is due to the tail of the skyrmions. The skyrmions cannot penetrate the hole, as explained
in the previous sections, but their tail can. The exponential localization of the skyrmions, as
explained earlier, is governed by the potential coefficient γ3. In the region of reduced γ3, their
average size is able to grow and so it continues to increase until they reach the boundary of the
system where they get reflected. In our simulations we saw that following this reflection the
skyrmions’ size decreases back to its starting value as the system tends to its starting point.
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Figure 8. Plots of the orbital angular momentum l, total magnetization m and total angular
momentum J = l + m for a potential hole with b = 2 
 = −0.25.
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Figure 9. Plot of the average skyrmion radius as a function of time for a potential hole with b = 2
and 
 = −0.25.

7. Further discussion of angular momentum

Here we discuss further the apparent non-conservation of J . Assuming the definitions of
l, m and hence of J to be valid and shown to be true in the free system, we ask ourselves:
can we explain this more qualitatively? Let us consider the behaviour of J . The form of
l(t) from figure 6 indicates that l̇ �= 0 and hence J̇ �= 0. The calculation of l includes only
the contribution of the fields, but clearly this may, for systems involving obstructions, not be
sufficient. We can consider adding an external contribution due to the potential obstruction
and see whether this restores J -conservation. How the potential obstructions affect, if at all,
the orbital angular momentum needs to be considered. The symmetric obstructions can be
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Figure 10. Plots of the numerically calculated time derivative of the total angular momentum
J = l + m and the contribution of the barrier to l̇ for b = 2 
 = 0.25.

written as a contribution to the potential term V (φ) in terms of the Heaviside functions. The
potential term and this inhomogeneity expressed in terms of the Heaviside functions can be
written as

V (φ) = 1
2γ3

(
1 − φ2

3

) ± 1
2


(
1 − φ2

3

)
[�(y + y0) − �(y − y0)] . (28)

Using the above definition of V (φ), one can compute the contribution made to l̇ in addition to
the fields already computed from (1). One needs to construct q̇ from its constituent parts as
shown in (9):

q̇ = −εij ∂i∂lσjl = −εij ∂i

(
δW

δφ
· ∂jφ

)
.

Using the properties of the Heaviside functions and their relations to the δ-function one can
show that the potential obstruction’s contribution to q̇ is given by

q̇ = ±φ3∂xφ3
 [δ(y + y0) − δ(y − y0))] .

With this expression for q̇, we can evaluate the total rate of change of the orbital angular
momentum due to the obstruction. We find

l̇ = 1

2

∫ ∫ ∞

−∞
(x2 + y2)q̇ dx dy

= ±


2

∫ ∞

−∞
dx

∫ ∞

−∞
(x2 + y2)∂x

(
1

2
φ2

3

)
[δ(y + y0) − δ(y − y0))] dy

= ±


2

∫ ∞

−∞
dx(x2 + y2)∂x

(
1

2
φ2

3

) ∣∣∣∣∣
y=−y0

y=y0

. (29)

The integrals in (29) have been calculated during each simulation. Figure 10 shows
the numerically computed integral contributions due to the obstruction and the numerically
calculated derivative of the orbital angular momentum from figure 6 plotted with respect to
time, for a potential barrier with b = 2 and 
 = 0.25. It can be seen from the plot that the
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Figure 11. Plots of the numerically calculated time derivative of the total angular momentum
J = l + m for the fields and the contribution of the hole to l̇ for b = 2 
 = −0.25.

time evolution of the integral contributions exactly matches that of l̇ due to the fields, so that
we have

l̇ = l̇fields + l̇barrier (30)

= d

dt

[
1

2

∫ ∫ ∞

−∞
(x2 + y2)q dx dy

]
+

±


2

∫ ∞

−∞
dx(x2 + y2)∂x

(
1

2
φ2

3

) ∣∣∣∣
y=−y0

y=y0

(31)


 0. (32)

Due to discretization effects and numerical inaccuracies, the result is not exact but the
qualitative features of the integral contributions make this a very consistent result.

Figure 11 shows the numerically computed integral contributions due to the obstruction
and the numerically calculated derivative of the orbital angular momentum from figure 8
plotted with time, for a potential hole with b = 2 and 
 = 0.25. It is clear from these plots
that the conservation of the total angular momentum J is restored by the introduction of the
terms corresponding to the potential obstructions’ contribution to l̇.

8. Conclusions

Our studies have shown that the scattering of baby skyrmions of our model off potential
obstructions, for which the dynamics is governed by the Landau–Lifshitz equation, exhibits
some nontrivial results.

We have managed to understand quite well the observed scattering properties of our
skyrmions despite their, at first sight, somewhat non-intuitive behaviour. Thus, in the case of
a potential hole the skyrmions were unable to penetrate it and so moved parallel to the x-axis
at a distance ys

max from the hole. The energy considerations have shown that the skyrmions, in
systems involving a potential hole, became unbound as they approached the hole and so could
and did move away from each other.

In the barrier systems the skyrmions were able to traverse the barrier. Our simulations
have shown that as the skyrmions traversed the barrier their distance of separation d decreased
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to overcome this increase in potential energy. At the same time the skyrmions sped up as they
climbed the barrier. The transition dynamics has showed that there exists a threshold value of
the binding energy in the barrier systems EB 
 −0.005/8π . By comparison, in the absence
of any potential obstructions, the binding energy of the two skyrmions is EB = −0.11/8π .
So this threshold binding energy is roughly half the binding energy if there was no barrier.
Above this value the skyrmions behave as a bound state, and below which they can separate
from each other. Our intuition and reasoning have led us to the conclusion that the tail–tail
interaction between the skyrmions is reduced due to the attenuation of the skyrmion tail by
the barrier, and this is responsible for this ‘threshold’ effect.

An interesting observation of our simulations was the apparent non-conservation of the
total angular momentum J (given its usual definition). This non-conservation of J was due to
the non-conservation of the orbital angular momentum l, as we have found that in all of the
simulations the total magnetization in the third direction m was well conserved in time. At the
same time we showed that l̇ �= 0. Thinking about this further we showed that when a system
possesses potential obstructions, these obstructions made a significant contribution to l̇. Hence
one has to modify the conventional definition of l. We have found this missing contribution and
we have shown that its change compensates l̇, resulting in the overall conservation of l and J for
the full system. We believe that most of the results presented here form a generic basis for the
description of the scattering of baby-skyrmion configurations in the Landau–Lifshitz models.
This is primarily due to conservation laws of the Landau–Lifshitz systems, as constructed by
Papanicolaou and Tomaras [10], and the observation that the potential obstructions contribute
to the conservation laws of the system.
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